
www.SecurityXploded.com

http://www.securityxploded.com/

Disclaimer

The Content, Demonstration, Source Code and Programs presented here

is "AS IS" without any warranty or conditions of any kind. Also the

views/ideas/knowledge expressed here are solely of the trainer’s only and

nothing to do with the company or the organization in which the trainer is

currently working.

However in no circumstances neither the trainer nor SecurityXploded is

responsible for any damage or loss caused due to use or misuse of the

information presented here.

www.SecurityXploded.com

Acknowledgement

 Special thanks to Null & Garage4Hackers community for their extended

support and cooperation.

 Thanks to all the Trainers who have devoted their precious time and

countless hours to make it happen.

 Thanks to ThoughtWorks for the beautiful and bigger venue.

www.SecurityXploded.com

Reversing & Malware Analysis Training

This presentation is a part of our Reverse Engineering & Malware

Analysis training program. Currently it is delivered only during our local

meet for FREE of cost.

For complete details of this course, visit our Security Training page.

www.SecurityXploded.com

http://securityxploded.com/security-training.php

Who am I #1

Amit Malik (sometimes DouBle_Zer0,DZZ)

 Member SecurityXploded & Garage4Hackers

 Security Researcher @ McAfee Labs

 RE, Exploit Analysis/Development, Malware Analysis

 Email: m.amit30@gmail.com

www.SecurityXploded.com

Agenda

 The material in this presentation is a bit complicated so

I will be using the zig-zag approach.

 Recap

 Protections (GS and SAFESEH)

 Client side exploits and Heap Spray

 Protections (DEP)

 Protections (ASLR)

 If time permits then few words on the following:

 Heap buffer overflows

www.SecurityXploded.com

Recap

 In previous session we covered:

 Stack based buffer overflow

○ EIP overwrite (saved return address)

○ SEH Overwrite

 We also discussed “why we need pop pop ret or other

similar instruction in SEH overflow”

 Now Question: Which one is more reliable or considered

to be more reliable in terms of exploitation ?

 Consider we have overwritten EIP and SEH successfully.

www.SecurityXploded.com

Protections Enforced by OS and

Processor

ASLR

DEP

GS Cookies SAFESEH

SEHOP

Forced
ASLR

www.SecurityXploded.com

*Safe unlinking, Heap cookies etc. are also protection methods added into the

OS.

Protections for stack based buffer

overflow (Primary)

 Fortunately or Unfortunately both protection schemes are

based on compiler/Linker options.

 * SEHOP is a different protection scheme based on run time SEH chain validation, It is not based

on compiler options however can be enabled or disabled through registry.

GS Cookie

EIP Overwrite ?

SafeSEH (SEHop*)

SEH Overwrite ?

www.SecurityXploded.com

GS Cookie (/GS)

 Put some random value (cookie – 32 bit) on stack

before return address.

 While returning, compare the value of saved

cookie, if not same then we have an overwrite.

 Generate “ Security Exception (if any)”, terminate

the Application.

www.SecurityXploded.com

/GS Cookie Cont...
Function Start:

Function end:

Cookie check function (see

“function end” in below picture.)

www.SecurityXploded.com

/GS Cookie Bypass

 Generate exception before cookie check

 Code dependent – if some overwritten variables are used

before function return.

 Overwrite stack up to the end, further overwrite will

generate exception

 Back to the question which exploitation (EIP or

SEH) is more reliable ?

 SEH method is considered to be a bit more safe and

reliable regardless of this bypassing technique.

www.SecurityXploded.com

/GS Cookie Bypass Cont..

Leverage the implementation. Did you see something ?

www.SecurityXploded.com

SafeSEH

 Compiler [Linker] /SAFESEH option

 Static list of known good exception handlers for the binary.

 Checks every time when a handler is called against the static list, if

not in the list then handler is invalid and takes preventive measures.

 Load configuration directory stores meta information about safe

exception handlers.

 If any module is not compiled with /SAFESEH then no check is

done to ensure the integrity of the handler for that module.

www.SecurityXploded.com

/SAFESEH Bypassing

 If any loaded module in the vulnerable binary is not /SAFESEH

compiled then no check is done to ensure the integrity of the handler

for that module, so we can use any p/p/r address from that module.

 Use the address that is outside the address range of loaded modules.

 Importance of forward and backward jump.

nseh

seh

payload

payload

nseh

seh

Forward

jump

Backward

jump

www.SecurityXploded.com

DEP (Data Execution Prevention)

 Two types:

 Software DEP (forget it)

 Hardware DEP (NX/XD enabled processors) – we will be

talking about it in the rest of the session.

 We can’t execute the code from non executable

area anymore.

 We are directly dealing with processer in this case.

www.SecurityXploded.com

DEP (HW) Bypass

 ROP (Return Oriented Programming)

 Use the system/existing code

 How stack works ?

 Main theme

 Either make non executable area executable

 Or allocate new area with executable permissions

 How ?

○ Well, use ROP

www.SecurityXploded.com

Stack Heap Flipping (Stack Pivoting)

 I think this deserve a dedicated slide

 Depending on the conditions we may have large ROP payload while

space on stack may be less or may be our entire payload is on heap.

 Flip the heap on to the stack so that we can get larger room.

 Instructions like XCHG ESP[REG], REG[ESP] can be used.

 We can also jump inside the valid instructions to change their meaning.

 Example: jump one byte inside “setz al” instruction (From Adobe

U3D exploit in wild)

www.SecurityXploded.com

DEP (HW) Bypass (DEMO)

 Methods

 HeapCreate

 VirtualAlloc

 VirtualProtect

 WriteProcessMemory (DEMO – simple, easy,

demonstrate the entire concept – XpSp3)

 Often times the small code chunks in ROP are

termed as “gadgets”

www.SecurityXploded.com

DEP (HW) Bypass (DEMO)

http://vimeo.com/49069964

www.SecurityXploded.com

http://vimeo.com/49069964

ASLR

 Address Space Layout Randomization

 Involves randomly positioning the memory areas

like base address of the binary, position of stack

and heap.

 Compiler[linker] /DYNAMICBASE option

www.SecurityXploded.com

ASLR Bypass

 Search for Non-ASLR loaded libraries in the

vulnerable application or if possible load one.

 JRE ?

 Memory leaks

 Brute force

 Heavily depends on vulnerability conditions

www.SecurityXploded.com

Client Side Exploits

 Exploits that targets client applications like

browsers, plugins, media players, readers etc.

 Much more dangerous then any other form of

exploits

 Huge impact and landscape

 Provides solid infection vector

 Big malicious infrastructure.

 Botnets, DDOS, Spam etc.

www.SecurityXploded.com

Heap Spray

 A technique used in client side exploits

 IT’S NOT A VULNERABILITY or CLASS OF VUL.

 It’s a technique used for code execution.

 Think about the followings again:

 EIP overwrite

 SEH overwrite

• What we used in the above and why we used that ?

 Heap spray provides very simple method for code execution.

www.SecurityXploded.com

Heap Spray Cont...

 Fortunately or unfortunately client side scripting languages like javascript,

vbscript etc. provides methods to allocate and deallocate memory on the client.

 Which means we can make invalid memory addresses valid.

Valid address invalid address range

(allocated area)

0x200... 0x400.. 0x500..

Valid address invalid address range

(allocated area)

0x200... 0x300.. 0x500..

Before Allocation

After Allocation

(0x300.. To 0x400..

Is valid now)

www.SecurityXploded.com

Heap Spray Cont..

 Allocate memory and fill with nop + shellcode

 Overwrite the EIP or SEH with any address within

the newly allocated area (the nop region).

 Here EIP overwrite or SEH overwrite can be by

any means.

 Stack buffer overflow, Heap buffer overflow, memory

corruption, use after free etc..

www.SecurityXploded.com

Heap Spray (DEMO – IEPeers

Vulnerability (IE6, IE7)

www.SecurityXploded.com

http://vimeo.com/49070337

http://vimeo.com/49070337

Heap Spray (Stability Comments)

 Use intelligent guesses

 Stability depends on the exploitation conditions

 Fragmented heap, choose little higher addresses.

 Large number of allocations, choose little lower

addresses

www.SecurityXploded.com

Reference

 Complete Reference Guide for Reversing & Malware

Analysis Training

www.SecurityXploded.com

http://securityxploded.com/malware-analysis-training-reference.php
http://securityxploded.com/malware-analysis-training-reference.php
http://technet.microsoft.com/en-us/library/cc768129.aspx

Thank You !

www.SecurityXploded.com

http://www.securityxploded.com/

